23

Elementary Graph Algorithms

This chapter presents methods for representing a graph and for searching
a graph. Searching a graph means systematically following the edges of
the graph so as to visit the vertices of the graph. A graph-searching algo-
rithm can discover much about the structure of a graph. Many algorithms
begin by searching their input graph to obtain this structural information.
Other graph algorithms are organized as simple elaborations of basic graph-
searching algorithms. Techniques for searching a graph are at the heart of
the field of graph algorithms.

Section 23.1 discusses the two most common computational representa-
tions of graphs: as adjacency lists and as adjacency matrices. Section 23.2
presents a simple graph-searching algorithm called breadth-first search and
shows how to create a breadth-first tree. Section 23.3 presents depth-first
search and proves some standard results about the order in which depth-
first search visits vertices. Section 23.4 provides our first real application of
depth-first search: topologically sorting a directed acyclic graph. A second
application of depth-first search, finding the strongly connected compo-
nents of a directed graph, is given in Section 23.5.

23.1

Representations of graphs

There are two standard ways to represent a graph G = (V, E): as a col-
lection of adjacency lists or as an adjacency matrix. The adjacency-list
representation is usually preferred, because it provides a compact way to
represent sparse graphs—those for which |E| is much less than |V|2. Most
of the graph algorithms presented in this book assume that an input graph
is represented in adjacency-list form. An adjacency-matrix representation
may be preferred, however, when the graph is dense—|E| is close to |V|2——
or when we need to be able to tell quickly if there is an edge connecting two
given vertices. For example, two of the all-pairs shortest-paths algorithms
presented in Chapter 26 assume that their input graphs are represented by
adjacency matrices.

The adjacency-list representation of a graph G = (V, E) consists of an
array Adj of |V| lists, one for each vertex in V. For each u € V, the

466

Ll

(a)

O—2)

ok

(a)

Chapter 23 Elementary Graph Algorithms

1 5|/ 1
2 1} 51 3] 4]/] 2
3 2 41/ 3
4 2] 5] ~{3]/] 4
5 4] 1] I2]/] 5
(b) ©

Figure 23.1 Two representations of an undirected graph. (a) An undirected
graph G having five vertices and seven edges. (b) An adjacency-list representa-
tion of G. (¢} The adjacency-matrix representation of G.

1 2 3 4 5 6

1 2] 4]/} 101 01 00

2 5|/ 210 00010

(3) 3 6| s/ 3]0 0001 1
4 21/ 410 1 0 0 00

5 41/ 50 001 00

6 6|/ 6/0 00 0 0 1

(b) ()

Figure 23.2 Two representations of a directed graph. (a) A directed graph G
having six vertices and eight edges. (b) An adjacency-list representation of G.
(e¢) The adjacency-matrix representation of G.

adjacency list Adj[u] contains (pointers to) all the vertices v such that
there is an edge (u,v) € E. That is, Adj[u] consists of all the vertices
adjacent to v in G. The vertices in each adjacency list are typically stored
in an arbitrary order. Figure 23.1(b) is an adjacency-list representation
of the undirected graph in Figure 23.1(a). Similarly, Figure 23.2(b) is an
adjacency-list representation of the directed graph in Figure 23.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists
is |E|, since an edge of the form (u,v) is represented by having v appear
in Adj[u]. If G is an undirected graph, the sum of the lengths of all the
adjacency lists is 2 |E|, since if (u, v) is an undirected edge, then u appears
in v’s adjacency list and vice versa. Whether a graph is directed or not, the
adjacency-list representation has the desirable property that the amount of
memory it requires is O(max(V, E)) = O(V + E).

Adjacency lists can readily be adapted to represent weighted graphs, that
is, graphs for which each edge has an associated weight, typically given by
a weight function w : E — R. For example, let G = (V, E) be a weighted
graph with weight function w. The weight w(u, v) of the edge (u,v) € E
is simply stored with vertex v in u’s adjacency list. The adjacency-list

23.1 Representations of graphs 467

representation is quite robust in that it can be modified to support many
other graph variants,

A potential disadvantage of the adjacency-list representation is that there
is no quicker way to determine if a given edge (u, v) is present in the graph
than to search for v in the adjacency list Adj{u]. This disadvantage can be
remedied by an adjacency-matrix representation of the graph, at the cost
of using asymptotically more memory.

For the adjacency-matrix representation of a graph G = (V, E), we assume
that the vertices are numbered 1,2, ..., |V | in some arbitrary manner. The
adjacency-matrix representation of a graph G then consists of a |V| x |V]
matrix 4 = (a;;) such that

L _J1 if)EE,
Y7 10 otherwise .

Figures 23.1(c) and 23.2(c) are the adjacency matrices of the undirected
and directed graphs in Figures 23.1(a) and 23.2(a), respectively. The ad-
jacency matrix of a graph requires ©(}’2) memory, independent of the
number of edges in the graph.

Observe the symmetry along the main diagonal of the adjacency matrix
in Figure 23.1(c). We define the the transpose of a matrix 4 = (a;;) to be
the matrix 4T = (af) given by a, = a;;. Since in an undirected graph,
(u,v) and (v, u) represent the same edge, the adjacency matrix 4 of an
undirected graph is its own transpose: 4 = AT. In some applications, it
pays to store only the entries on and above the diagonal of the adjacency
matrix, thereby cutting the memory needed to store the graph almost in
half.

Like the adjacency-list representation of a graph, the adjacency-matrix
representation can be used for weighted graphs. For example, if G = (V, E)
is a weighted graph with edge-weight function w, the weight w(u, v) of the
edge (u,v) € E is simply stored as the entry in row u# and column v of the
adjacency matrix. If an edge does not exist, a NIL value can be stored as
its corresponding matrix entry, though for many problems it is convenient
to use a value such as 0 or co.

Although the adjacency-list representation is asymptotically at least as
efficient as the adjacency-matrix representation, the simplicity of an ad-
jacency matrix may mabke it preferable when graphs are reasonably small.
Moreover, if the graph is unweighted, there is an additional advantage in
storage for the adjacency-matrix representation. Rather than using one
word of computer memory for each matrix entry, the adjacency matrix
uses only one bit per entry.

468

Chapter 23 Elementary Graph Algorithms

Exercises

23.1-1

Given an adjacency-list representation of a directed graph, how long does
it take to compute the out-degree of every vertex? How long does it take
to compute the in-degrees?

23.1-2

Give an adjacency-list representation for a complete binary tree on 7 ver-
tices. Give an equivalent adjacency-matrix representation. Assume that
vertices are numbered from 1 to 7 as in a binary heap.

23.1-3

The transpose of a directed graph G = (V, E) is the graph GT = (V,ET),
where ET = {(v,u) € ¥V x V : (u4,v) € E}. Thus, GT is G with all its edges
reversed. Describe efficient algorithms for computing GT from G, for both
the adjacency-list and adjacency-matrix representations of G. Analyze the
running times of your algorithms.

23.1-4

Given an adjacency-list representation of a multigraph G = (V, E), de-
scribe an O(V + E)-time algorithm to compute the adjacency-list represen-
tation of the “equivalent” undirected graph G’ = (V, E’), where E’ consists
of the edges in E with all multiple edges between two vertices replaced by
a single edge and with all self-loops removed.

23.1-5

The square of a directed graph G = (V, E) is the graph G? = (V, E?) such
that (u,w) € E? if and only if for some v € V, both (4,v) € E and
(v,w) € E. That is, G? contains an edge between u and w whenever
G contains a path with exactly two edges between u and w. Describe
efficient algorithms for computing G2 from G for both the adjacency-list
and adjacency-matrix representations of G. Analyze the running times of
your algorithms,

23.1-6

When an adjacency-matrix representation is used, most graph algorithms
require time ©(}'?), but there are some exceptions. Show that determining
whether a directed graph contains a sink—a vertex with in-degree |V| — 1
and out-degree 0—can be determined in time O(V'), even if an adjacency-
matrix representation is used.

23.1-7
The incidence matrix of a directed graph G = (V, E) is a |V| x |E| matrix
B = (b,'j) such that

23.2 Breadth-first search 469

—1 if edge j leaves vertex i ,
bij=<¢1 if edge j enters vertex i ,
0 otherwise .

Describe what the entries of the matrix product BBT represent, where BT
is the transpose of B.

23.2 Breadth-first search

Breadth-first search is one of the simplest algorithms for searching a graph
and the archetype for many important graph algorithms. Dijkstra’s single-
source shortest-paths algorithm (Chapter 25) and Prim’s minimum-span-
ning-tree algorithm (Section 24.2) use ideas similar to those in breadth-first
search.

Given a graph G = (V, E) and a distinguished source vertex s, breadth-
first search systematically explores the edges of G to “discover” every vertex
that is reachable from s. It computes the distance (fewest number of edges)
from s to all such reachable vertices. It also produces a “breadth-first tree”
with root s that contains all such reachable vertices. For any vertex v
reachable from s, the path in the breadth-first tree from s to v corresponds
to a “shortest path” from s to v in G, that is, a path containing the fewest
number of edges. The algorithm works on both directed and undirected
graphs.

Breadth-first search is so named because it expands the frontier between
discovered and undiscovered vertices uniformly across the breadth of the
frontier. That is, the algorithm discovers all vertices at distance £ from s
before discovering any vertices at distance k + 1.

To keep track of progress, breadth-first search colors each vertex white,
gray, or black. All vertices start out white and may later become gray and
then black. A vertex is discovered the first time it is encountered during
the search, at which time it becomes nonwhite. Gray and black vertices,
therefore, have been discovered, but breadth-first search distinguishes be-
tween them to ensure that the search proceeds in a breadth-first manner.
If (u,v) € E and vertex u is black, then vertex v is either gray or black;
that is, all vertices adjacent to black vertices have been discovered. Gray
vertices may have some adjacent white vertices; they represent the frontier
between discovered and undiscovered vertices.

Breadth-first search constructs a breadth-first tree, initially containing
only its root, which is the source vertex s. Whenever a white vertex v
is discovered in the course of scanning the adjacency list of an already
discovered vertex u, the vertex v and the edge (u,v) are added to the
tree. We say that u is the predecessor or parent of v in the breadth-first
tree. Since a vertex is discovered at most once, it has at most one parent.
Ancestor and descendant relationships in the breadth-first tree are defined

470

Chapter 23 Elementary Graph Algorithms

relative to the root s as usual: if & is on a path in the tree from the root s
to vertex v, then u is an ancestor of v and v is a descendant of wu.

The breadth-first-search procedure BFS below assumes that the input
graph G = (V, E) is represented using adjacency lists. It maintains several
additional data structures with each vertex in the graph. The color of
each vertex u € V is stored in the variable color[u], and the predecessor
of u is stored in the variable n{u]. If 4 has no predecessor (for example,
if ¥ = s or u has not been discovered), then n[u] = NIL. The distance
from the source s to vertex ¥ computed by the algorithm is stored in d[u].
The algorithm also uses a first-in, first-out queue Q (see Section 11.1) to
manage the set of gray vertices.

BFS(G, s)
1 for each vertex u € V[G] — {s}
2 do color[u] — WHITE
3 dlu] —
4 n[u] — NIL
5 color[s] — GRAY
6 d[s]—0
7 m[s] « NIL
8 Q« {s}
9 while Q #0
10 do u — head[Q]
11 for each v € Adj[u]
12 do if color{v] = WHITE
13 then color[v] — GRAY
14 djv] — d[u] + 1
15 nv]l—u
16 ENQUEUE(Q, V)
17 DEQUEUE(Q)
18 color[u] + BLACK

Figure 23.3 illustrates the progress of BFS on a sample graph.

The procedure BFS works as follows. Lines 1-4 paint every vertex white,
set d[u] to be infinity for every vertex u, and set the parent of every vertex
to be NIL. Line 5 paints the source vertex s gray, since it is considered to
be discovered when the procedure begins. Line 6 initializes d[s] to 0, and
line 7 sets the predecessor of the source to be NIL. Line 8 initializes Q to
the queue containing just the vertex s; thereafter, Q always contains the
set of gray vertices.

The main loop of the program is contained in lines 9-18. The loop
iterates as long as there remain gray vertices, which are discovered ver-
tices that have not yet had their adjacency lists fully examined. Line 10
determines the gray vertex u at the head of the queue Q. The for loop
of lines 11-16 considers each vertex v in the adjacency list of u. If v is
white, then it has not yet been discovered, and the algorithm discovers it

(c)

(e)

(g)

23.2 Breadth-first search 471

o [s]
0

o [r]e]x
2 2

1

0 [x[v]u]

2 2 3
u r 5 t u
0 |u]y] (h) o [y]
3 3 3
y v w X y
u
Q0 o

Y

Figure 23.3 The operation of BFS on an undirected graph. Tree edges are shown
shaded as they are produced by BFS. Within each vertex u is shown d[u]. The
queue @ is shown at the beginning of each iteration of the while loop of lines 9-18.
Vertex distances are shown next to vertices in the queue.

by executing lines 13-16. It is first grayed, and its distance d[v] is set to
d{u] + 1. Then, u is recorded as its parent. Finally, it is placed at the
tail of the queue Q. When all the vertices on u’s adjacency list have been
examined, u is removed from Q and blackened in lines 17-18.

Analysis

Before proving all the various properties of breadth-first search, we take on
the somewhat easier job of analyzing its running time on an input graph
G = (V,E). After initialization, no vertex is ever whitened, and thus
the test in line 12 ensures that each vertex is enqueued at most once, and
hence dequeued at most once. The operations of enqueuing and dequeuing
take O(1) time, so the total time devoted to queue operations is O(V).

472

Chapter 23 Elementary Graph Algorithms

Because the adjacency list of each vertex is scanned only when the vertex
is dequeued, the adjacency list of each vertex is scanned at most once.
Since the sum of the lengths of all the adjacency lists is O(E), at most
O(E) time is spent in total scanning adjacency lists. The overhead for
initialization is O(V'), and thus the total running time of BFS is O(V + E).
Thus, breadth-first search runs in time linear in the size of the adjacency-
list representation of G.

Shortest paths

At the beginning of this section, we claimed that breadth-first search finds
the distance to each reachable vertex in a graph G = (¥, E) from a given
source vertex s € V. Define the shortest-path distance 6(s,v) from s to v
as the minimum number of edges in any path from vertex s to vertex v, or
else oo if there is no path from s to v. A path of length d(s,v) from s to v
is said to be a shortest path' from s to v. Before showing that breadth-
first search actually computes shortest-path distances, we investigate an
important property of shortest-path distances.

Lemma 23.1
Let G = (V, E) be a directed or undirected graph, and let s € V be an
arbitrary vertex. Then, for any edge (u,v) € E,

o(s,v) <d(s,u)+1.

Proof If u is reachable from s, then so is v. In this case, the shortest path
from s to v cannot be longer than the shortest path from s to u followed by
the edge (u, v), and thus the inequality holds. If « is not reachable from s,
then d(s, #) = oo, and the inequality holds. []

We want to show that BFS properly computes d[v] = d(s,v) for each
vertex v € V. We first show that d[v] bounds Jd(s,v) from above.

Lemma 23.2

Let G = (V, E) be a directed or undirected graph, and suppose that BFS is
run on G from a given source vertex s € V. Then upon termination, for
each vertex v € V, the value d[v] computed by BFS satisfies d[v] > d(s, v).

Proof We use induction on the number of times a vertex is placed in the
queue (J. Our inductive hypothesis is that d[v] > d(s,v) forall v € V.

'In Chapters 25 and 26, we shall generalize our study of shortest paths to weighted graphs, in
which every edge has a real-valued weight and the weight of a path is the sum of the weights
of its constituent edges. The graphs considered in the present chapter are unweighted.

23.2 Breadth-first search 473

The basis of the induction is the situation immediately after s is placed
in Q in line 8 of BFS. The inductive hypothesis holds here, because d[s] =
0=4(s,s) and d[v] = cc > I(s,v) forall v € V — {s}.

For the inductive step, consider a white vertex v that is discovered during
the search from a vertex u. The inductive hypothesis implies that d[u] >
d(s,u). From the assignment performed by line 14 and from Lemma 23.1,
we obtain

dlvl = d[u]+1
o(s,u)+1

2
> o(s,v).

Vertex v is then inserted into the queue Q, and it is never inserted again
because it is also grayed and the then clause of lines 13-16 is executed only
for white vertices. Thus, the value of d[v] never changes again, and the
inductive hypothesis is maintained.]

To prove that d[v] = d(s,v), we must first show more precisely how the
queue Q operates during the course of BFS. The next lemma shows that
at all times, there are at most two distinct d values in the queue.

Lemma 23.3
Suppose that during the execution of BFS on a graph G = (V, E), the
queue Q contains the vertices (v, v2,...,v,), where v, is the head of Q

and v, is the tail. Then, d[v,] < d[v,] + | and d[v;] < d[v;;4] for i =
,L2,...,r—1.

Proof The proof is by induction on the number of queue operations.
Initially, when the queue contains only s, the lemma certainly holds.

For the inductive step, we must prove the lemma holds after both de-
queuing and enqueuing a vertex. If the head v, of the queue is dequeued,
the new head is v,. (If the queue becomes empty, then the lemma holds
vacuously.) But then we have d[v,] < d[v,] + 1 < d[v2] + 1, and the re-
maining inequalities are unaffected. Thus, the lemma follows with v, as
the head. Enqueuing a vertex requires closer examination of the code. In
line 16 of BFS, when the vertex v is enqueued, thus becoming v,,, the
head v, of Q is in fact the vertex u whose adjacency list is currently being
scanned. Thus, d[v,4] = d[v] = d[u] + 1 = d[v;] + 1. We also have
d[v,] < d[v,]+ 1 =d[u] + 1 =d[v] = d[v,,,], and the remaining inequal-
ities are unaffected. Thus, the lemma follows when v is enqueued. [

We can now prove that breadth-first search correctly finds shortest-path
distances.

Theorem 23.4 (Correctness of breadth-first search)
Let G = (V, E) be a directed or undirected graph, and suppose that BFS
is run on G from a given source vertex s € V. Then, during its execution,

474

Chapter 23 Elementary Graph Algorithms

BFS discovers every vertex v € V that is reachable from the source s, and
upon termination, d[v] = d(s,v) for all v € V. Moreover, for any vertex
v # s that is reachable from s, one of the shortest paths from s to v is the
shortest path from s to z[v] followed by the edge (n[v], v).

Proof We start with the case in which v is unreachable from s. Since
Lemma 23.2 gives d[v] > d(s,v) = oo, vertex v cannot have d[v] set to a
finite value in line 14. By induction, there cannot be a first vertex whose
d value is set to co by line 14. Line 14 is therefore only executed only
for vertices with finite d values. Thus, if v is unreachable, it is never
discovered.

The main part of the proof is for vertices reachable from s. Let V, denote
the set of vertices at distance k from s; that is, V, = {v € V' : §(s,v) = k}.
The proof proceeds by induction on k. As an inductive hypothesis, we
assume that for each vertex v € V;, there is exactly one point during the
execution of BFS at which

* v is grayed,

» d[v)issettok,

* if v # s, then m[v] is set to u for some u € V;_,, and
* v is inserted into the queue Q.

As we have noted before, there is certainly at most one such point.

The basis is for kK = 0. We have ¥, = {s}, since the source s is the only
vertex at distance 0 from s. During the initialization, s is grayed, d[s] is
set to 0, and s is placed into Q, so the inductive hypothesis holds.

For the inductive step, we start by noting that the queue Q is never empty
until the algorithm terminates and that, once a vertex u is inserted into
the queue, neither d[u] nor n[u] ever changes. By Lemma 23.3, therefore,
if vertices are inserted into the queue over the course of the algorithm in
the order vy,vy,...,v,, then the sequence of distances is monotonically
increasing: d[v;] <d[vi]fori=1,2,...,r—1.

Now let us consider an arbitrary vertex v € V,, where kK > 1. The
monotonicity property, combined with d[v] > k (by Lemma 23.2) and the
inductive hypothesis, implies that v must be discovered after all vertices
in V,_; are enqueued, if it is discovered at all.

Since d(s,v) = k, there is a path of k edges from s to v, and thus there
exists a vertex u € V;_, such that (4, v) € E. Without loss of generality, let
u be the first such vertex grayed, which must happen since, by induction,
all vertices in V,_, are grayed. The code for BFS enqueues every grayed
vertex, and hence ¥ must ultimately appear as the head of the queue in
line 10. When u appears as the head, its adjacency list is scanned and v
is discovered. (The vertex v could not have been discovered earlier, since
it is not adjacent to any vertex in V; for j < k — 1—otherwise, v could
not belong to ¥,—and by assumption, u is the first vertex discovered in
Vi1 to which v is adjacent.) Line 13 grays v, line 14 establishes d[v] =

23.2 Breadth-first search 475

d[u]+ 1 = k, line 15 sets z[v] to u, and line 16 inserts v into the queue.
Since v is an arbitrary vertex in V, the inductive hypothesis is proved.
To conclude the proof of the lemma, observe that if v € V}, then by
what we have just seen, n[v] € V;_,. Thus, we can obtain a shortest path
from s to v by taking a shortest path from s to #[v] and then traversing
the edge (rn[v], v). =

Breadth-first trees

The procedure BFS builds a breadth-first tree as it searches the graph, as
illustrated in Figure 23.3. The tree is represented by the = field in each
vertex. More formally, for a graph G = (V, E) with source s, we define the
predecessor subgraph of G as G, = (V;, E,), where

Ve={veV:nv]#nNL}U{s}
and
E, ={(rv],v)e E:veV,—{s}}.

The predecessor subgraph G, is a breadth-first tree if V, consists of the
vertices reachable from s and, for all v € V7, there is a unique simple
path from s to v in G, that is also a shortest path fromstov in G. A
breadth-first tree is in fact a tree, since it is connected and |E,| = V| — 1
(see Theorem 5.2). The edges in E, are called tree edges.

After BFS has been run from a source s on a graph G, the following
lemma shows that the predecessor subgraph is a breadth-first tree.

Lemma 23.5

When applied to a directed or undirected graph G = (V, E), procedure BFS
constructs n so that the predecessor subgraph G, = (V;, E;) is a breadth-
first tree.

Proof Line 15 of BFS only sets n[v] = u if (¥,v) € E and (s, v) < oo—
that is, if v is reachable from s—and thus V; consists of the vertices in V'
reachable from v. Since G, forms a tree, it contains a unique path from s
to each vertex in V7. By applying Theorem 23.4 inductively, we conclude
that every such path is a shortest path. n

The following procedure prints out the vertices on a shortest path from s
to v, assuming that BFS has already been run to compute the shortest-path
tree.

476

Chapter 23 Elementary Graph Algorithms

PRINT-PATH(G, 5,v)
1 ifv=s
2 then print s

3 else if n[v] = NIL

4 then print “no path from” s “to” v “exists”
5 else PRINT-PATH(G, s, n[v])

6 print v

This procedure runs in time linear in the number of vertices in the path
printed, since each recursive call is for a path one vertex shorter.

Exercises

23.2-1
Show the result of running breadth-first search on the directed graph of
Figure 23.2(a), using vertex 3 as the source.

23.2-2
Show the result of running breadth-first search on the undirected graph of
Figure 23.3, using vertex u as the source.

23.2-3
What is the running time of BFS if its input graph is represented by an
adjacency matrix and the algorithm is modified to handle this form of
input?

23.2-4
Argue that in a breadth-first search, the value d[u] assigned to a vertex u
is independent of the order in which the vertices in each adjacency list are
given.

23.2-5

Give an example of a directed graph G = (¥, E), a source vertex s € V,
and a set of tree edges E, C E such that for each vertex v € V, the unique
path in E, from s to v is a shortest path in G, yet the set of edges E,
cannot be produced by running BFS on G, no matter how the vertices are
ordered in each adjacency list.

23.2-6
Give an efficient algorithm to determine if an undirected graph is bipartite.

23.2-7 *
The diameter of a tree T = (V, E) is given by

max d(u,v) ;
uveV ()’

23.3 Depth-first search 477

that is, the diameter is the largest of all shortest-path distances in the tree.
Give an efficient algorithm to compute the diameter of a tree, and analyze
the running time of your algorithm.

23.2-8

Let G = (V, E) be an undirected graph. Give an O(V + E)-time algorithm
to compute a path in G that traverses each edge in £ exactly once in each
direction. Describe how you can find your way out of a maze if you are
given a large supply of pennies.

23.3 Depth-first search

The strategy followed by depth-first search is, as its name implies, to search
“deeper” in the graph whenever possible. In depth-first search, edges are
explored out of the most recently discovered vertex v that still has un-
explored edges leaving it. When all of v’s edges have been explored, the
search “backtracks” to explore edges leaving the vertex from which v was
discovered. This process continues until we have discovered all the vertices
that are reachable from the original source vertex. If any undiscovered ver-
tices remain, then one of them is selected as a new source and the search is
repeated from that source. This entire process is repeated until all vertices
are discovered.

As in breadth-first search, whenever a vertex v is discovered during a
scan of the adjacency list of an already discovered vertex u, depth-first
search records this event by setting v’s predecessor field n[v] to . Unlike
breadth-first search, whose predecessor subgraph forms a tree, the pre-
decessor subgraph produced by a depth-first search may be composed of
several trees, because the search may be repeated from multiple sources.
The predecessor subgraph of a depth-first search is therefore defined slightly
differently from that of a breadth-first search: we let G, = (V, E;), where

E, = {(n[v],v):v € V and w[v] # NIL} .

The predecessor subgraph of a depth-first search forms a depth-first forest
composed of several depth-first trees. The edges in E, are called tree edges.

As in breadth-first search, vertices are colored during the search to indi-
cate their state. Each vertex is initially white, is grayed when it is discovered
in the search, and is blackened when it is finished, that is, when its adja-
cency list has been examined completely. This technique guarantees that
each vertex ends up in exactly one depth-first tree, so that these trees are
disjoint.

Besides creating a depth-first forest, depth-first search also timestamps
each vertex. Each vertex v has two timestamps: the first timestamp d[v]
records when v is first discovered (and grayed), and the second timestamp
fIv] records when the search finishes examining v’s adjacency list (and

478

Chapter 23 Elementary Graph Algorithms

blackens v). These timestamps are used in many graph algorithms and are
generally helpful in reasoning about the behavior of depth-first search.

The procedure DFS below records when it discovers vertex u in the
variable dfu] and when it finishes vertex u in the variable f[u]. These
timestamps are integers between 1 and 2|V|, since there is one discov-
ery event and one finishing event for each of the |V| vertices. For every
vertex u,

d{u] < flu] . (23.1)

Vertex u is WHITE before time d[u], GRAY between time d[u] and time
flu], and BLACK thereafter.

The following pseudocode is the basic depth-first-search algorithm. The
input graph G may be undirected or directed. The variable time is a global
variable that we use for timestamping.

DFS(G)

1 for each vertex u € V[G]

2 do color{u] — WHITE

3 n[u] — NIL

4 time—0

5 for each vertex u € V[G]

6 do if color{u] = WHITE
7 then DFS-VisiT(u)

DFS-VIsiT(u)

1 color{u] — GRAY > White vertex u has just been discovered.
2 dlu] « time — time + 1

3 for each v € Adj[u] > Explore edge (u, v).

4 do if color{v] = WHITE

5 then n[v] — u

6 DFS-VisiT(v)

7 color{u] — BLACK > Blacken u; it is finished.

8 flu) — time — time+ 1

Figure 23.4 illustrates the progress of DFS on the graph shown in Fig-
ure 23.2.

Procedure DFS works as follows. Lines 1-3 paint all vertices white
and initialize their n fields to NIL. Line 4 resets the global time counter.
Lines 5-7 check each vertex in V in turn and, when a white vertex is
found, visit it using DFS-Visit. Every time DFS-VisiT(u) is called in
line 7, vertex u becomes the root of a new tree in the depth-first forest.
When DFS returns, every vertex u has been assigned a discovery time d[«]
and a finishing time fu].

In each call DFS-VisiT(u), vertex u is initially white. Line 1 paints u
gray, and line 2 records the discovery time d[u] by incrementing and saving

23.3 Depth-first search 479

() ©) ®

Figure 23.4 The progress of the depth-first-search algorithm DFS on a directed
graph. As edges are explored by the algorithm, they are shown as either shaded
(if they are tree edges) or dashed (otherwise). Nontree edges are labeled B, C,
or F according to whether they are back, cross, or forward edges. Vertices are
timestamped by discovery time/finishing time.

the global variable time. Lines 3—-6 examine each vertex v adjacent to « and
recursively visit v if it is white. As each vertex v € Adj[u] is considered in
line 3, we say that edge (u,v) is explored by the depth-first search. Finally,
after every edge leaving u has been explored, lines 7-8 paint u black and
record the finishing time in fTu].

What is the running time of DFS? The loops on lines 1-2 and lines 5-7
of DFS take time ©(V'), exclusive of the time to execute the calls to DFS-
Visit. The procedure DFS-VisIT is called exactly once for each vertex
v € V, since DFS-VIsIT is invoked only on white vertices and the first thing
it does is paint the vertex gray. During an execution of DFS-VisiT(v), the
loop on lines 3-6 is executed |4dj[v]| times. Since

> |4dj[v]| = ©(E) ,
velV

the total cost of executing lines 2-5 of DFS-VisiT is ©(FE). The running
time of DFS is therefore ©(V + E).

480

Chapter 23 Elementary Graph Algorithms

Properties of depth-first search

Depth-first search yields much information about the structure of a graph.
Perhaps the most basic property of depth-first search is that the predecessor
subgraph G, does indeed form a forest of trees, since the structure of the
depth-first trees exactly mirrors the structure of recursive calls of DFS-
Visit. That is, u = n[v] if and only if DFS-VisiT(v) was called during a
search of #’s adjacency list.

Another important property of depth-first search is that discovery and
finishing times have parenthesis structure. 1f we represent the discovery
of vertex u with a left parenthesis “(#” and represent its finishing by a
right parenthesis “u),” then the history of discoveries and finishings makes
a well-formed expression in the sense that the parentheses are properly
nested. For example, the depth-first search of Figure 23.5(a) corresponds
to the parenthesization shown in Figure 23.5(b). Another way of stating
the condition of parenthesis structure is given in the following theorem.

Theorem 23.6 (Parenthesis theorem)

In any depth-first search of a (directed or undirected) graph G = (V, E),
for any two vertices u and v, exactly one of the following three conditions
holds:

* the intervals [d[u], f[«]] and [d[v],f[v]] are entirely disjoint,

¢ the interval [d[u],f[u]] is contained entirely within the interval [d[v],
SfIv]], and u is a descendant of v in the depth-first tree, or

* the interval [d[v],f[v]] is contained entirely within the interval [d]u],
SfIu]], and v is a descendant of u in the depth-first tree.

Proof We begin with the case in which d[u] < d[v]. There are two
subcases to consider, according to whether d[v] < f[u] or not. In the
first subcase, d[v] < fTu], so v was discovered while u was still gray. This
implies that v is a descendant of u. Moreover, since v was discovered more
recently than w, all of its outgoing edges are explored, and v is finished,
before the search returns to and finishes «. In this case, therefore, the
interval [d[v],f[v]] is entirely contained within the interval [d[u], f[u]).
In the other subcase, f[u] < d[v], and inequality (23.1) implies that the
intervals [d[u], fTu]] and [d[v], f[v]] are disjoint.

The case in which d[v] < d[u] is similar, with the roles of # and v
reversed in the above argument. [

Corollary 23.7 (Nesting of descendants’ intervals)
Vertex v is a proper descendant of vertex u in the depth-first forest for a
(directed or undirected) graph G if and only if d[u] < d[v] < f[v] < flu].

Proof Immediate from Theorem 23.6. [

23.3 Depth-first search

(a)
ihiltllllllill I|F
. | | B |
CHE BERNESE
1 2 3 45 é 7 & 9 1011 12 13 14 15 16
6 @ @x)y) ww 2)s) @t vv) (uuwr
(c)

481

Figure 23.5 Properties of depth-first search. (a) The result of a depth-first search
of a directed graph. Vertices are timestamped and edge types are indicated as in
Figure 23.4. (b) Intervals for the discovery time and finishing time of each vertex
correspond to the parenthesization shown. Each rectangle spans the interval given
by the discovery and finishing times of the corresponding vertex. Tree edges are
shown. If two intervals overlap, then one is nested within the other, and the vertex
corresponding to the smaller interval is a descendant of the vertex corresponding
to the larger. (c¢) The graph of part (a) redrawn with all tree and forward edges
going down within a depth-first tree and all back edges going up from a descendant

10 an ancestor.

482

Chapter 23 Elementary Graph Algorithms

The next theorem gives another important characterization of when one
vertex is a descendant of another in the depth-first forest.

Theorem 23.8 (White-path theorem)

In a depth-first forest of a (directed or undirected) graph G = (V, E),
vertex v is a descendant of vertex u if and only if at the time d[u] that the
search discovers u, vertex v can be reached from u along a path consisting
entirely of white vertices.

Proof =>: Assume that v is a descendant of u. Let w be any vertex on
the path between u and v in the depth-first tree, so that w is a descendant
of u. By Corollary 23.7, d[u] < d[w], and so w is white at time d[u].

<=: Suppose that vertex v is reachable from u along a path of white
vertices at time d[u], but v does not become a descendant of u in the
depth-first tree. Without loss of generality, assume that every other vertex
along the path becomes a descendant of u. (Otherwise, let v be the closest
vertex to u along the path that doesn’t become a descendant of u«.) Let w
be the predecessor of v in the path, so that w is a descendant of ¥ (w and u
may in fact be the same vertex) and, by Corollary 23.7, flw] < flu]. Note
that v must be discovered after u is discovered, but before w is finished.
Therefore, d[u] < d[v] < flw] < fTu]. Theorem 23.6 then implies that the
interval [d[v], fv]] is contained entirely within the interval [d[u], fT«]]. By
Corollary 23.7, v must after all be a descendant of u. a

Classification of edges

Another interesting property of depth-first search is that the search can
be used to classify the edges of the input graph G = (V,E). This edge
classification can be used to glean important information about a graph.
For example, in the next section, we shall see that a directed graph is acyclic
if and only if a depth-first search yields no “back” edges (Lemma 23.10).

We can define four edge types in terms of the depth-first forest G, pro-
duced by a depth-first search on G.

1. Tree edges arc edges in the depth-first forest G,. Edge (u,v) is a tree
edge if v was first discovered by exploring edge (u, v).

2. Back edges are those edges (¥, v) connecting a vertex « to an ancestor v
in a depth-first tree. Self-loops are considered to be back edges.

3. Forward edges are those nontree edges (1, v) connecting a vertex u to a
descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other, or
they can go between vertices in different depth-first trees.

In Figures 23.4 and 23.5, edges are labeled to indicate their type. Fig-
ure 23.5(c) also shows how the graph of Figure 23.5(a) can be redrawn so-

23.3 Depth-first search 483

that all tree and forward edges head downward in a depth-first tree and all
back edges go up. Any graph can be redrawn in this fashion.

The DFS algorithm can be modified to classify edges as it encounters
them. The key idea is that each edge (#,v) can be classified by the color
of the vertex v that is reached when the edge is first explored (except that
forward and cross edges are not distinguished):

1. wHITE indicates a tree edge,
2. GRAY indicates a back edge, and
3. BLACK indicates a forward or cross edge.

The first case 1s immediate from the specification of the algorithm. For the
second case, observe that the gray vertices always form a linear chain of
descendants corresponding to the stack of active DFS-VIsSIT invocations;
the number of gray vertices is one more than the depth in the depth-first
forest of the vertex most recently discovered. Exploration always proceeds
from the deepest gray vertex, so an edge that reaches another gray vertex
reaches an ancestor. The third case handles the remaining possibility; it
can be shown that such an edge (u,v) is a forward edge if d[u] < d[v] and
a cross edge if d[u] > d[v]. (See Exercise 23.3-4.)

In an undirected graph, there may be some ambiguity in the type classi-
fication, since (#,v) and (v,) are really the same edge. In such a case, the
edge is classified as the first type in the classification list that applies. Equiv-
alently (see Exercise 23.3-5), the edge is classified according to whichever
of (u,v) or (v, u) is encountered first during the execution of the algorithm.

We now show that forward and cross edges never occur in a depth-first
search of an undirected graph.

Theorem 23.9
In a depth-first search of an undirected graph G, every edge of G is either
a tree edge or a back edge.

Proof Let (u,v) be an arbitrary edge of G, and suppose without loss
of generality that d[u] < d[v]. Then, v must be discovered and finished
before we finish u, since v is on #’s adjacency list. If the edge (u,v) is
explored first in the direction from u to v, then (u, v) becomes a tree edge.
If (u,v) 1s explored first in the direction from v to u, then (4, v) is a back
edge, since u is still gray at the time the edge is first explored.]

We shall see many applications of these theorems in the following sec-
tions.

Exercises

23.3-1
Make a 3-by-3 chart with row and column labels. WHITE, GRAY, and BLACK.
In each cell (i, j), indicate whether, at any point during a depth-first search

484

Chapter 23 Elementary Graph Algorithms

Figure 23.6 A directed graph for use in Exercises 23.3-2 and 23.5-2.

of a directed graph, there can be an edge from a vertex of color 7 to a vertex
of color j. For each possible edge, indicate what edge types it can be. Make
a second such chart for depth-first search of an undirected graph.

23.3-2

Show how depth-first search works on the graph of Figure 23.6. Assume
that the for loop of lines 5-7 of the DFS procedure considers the vertices
in alphabetical order, and assume that each adjacency list is ordered al-
phabetically. Show the discovery and finishing times for each vertex, and
show the classification of each edge.

23.3-3
Show the parenthesis structure of the depth-first search shown in Fig-
ure 23.4.

23.3-4
Show that edge (u,v) is

a. a tree edge or forward edge if and only if d[u] < d[v] < flv] < fu],
b. a back edge if and only if d[v] < d[u] < flu] < fIv], and
¢. a cross edge if and only if d[v] < f[v] < d[u] < flu].

23.3-5

Show that in an undirected graph, classifying an edge (u,v) as a tree edge
or a back edge according to whether (u,v) or (v,u) is encountered first
during the depth-first search is equivalent to classifying it according to the
priority of types in the classification scheme.

23.3-6

Give a counterexample to the conjecture that if there is a path from u to v
in a directed graph G, and if d[u] < d[v] in a depth-first search of G, then
v is a descendant of « in the depth-first forest produced.

23.4 Topological sort 485

23.3-7

Modify the pseudocode for depth-first search so that it prints out every
edge in the directed graph G, together with its type. Show what modifica-
tions, if any, must be made if G is undirected.

23.3-8

Explain how a vertex u of a directed graph can end up in a depth-first tree
containing only u, even though u has both incoming and outgoing edges
in G.

23.3-9

Show that a depth-first search of an undirected graph G can be used to
identify the connected components of G, and that the depth-first forest
contains as many trees as G has connected components. More precisely,
show how to modify depth-first search so that each vertex v is assigned an
integer label cc[v] between 1 and k, where k is the number of connected
components of G, such that cc[u] = cc[v] if and only if # and v are in the
same connected component.

23.3-10 x
A directed graph G = (V, E) is singly connected if u ~» v implies that there
is at most one simple path from u to v for all vertices u,v € V. Give an
efficient algorithm to determine whether or not a directed graph is singly
connected.

23.4 Topological sort

This section shows how depth-first search can be used to perform topo-
logical sorts of directed acyclic graphs, or “dags” as they are sometimes
called. A topological sort of a dag G = (V,E) is a linear ordering of all
its vertices such that if G contains an edge (¢, v), then u appears before v
in the ordering. (If the graph is not acyclic, then no linear ordering is
possible.) A topological sort of a graph can be viewed as an ordering of
its vertices along a horizontal line so that all directed edges go from left to
right. Topological sorting is thus different from the usual kind of “sorting”
studied in Part II.

Directed acyclic graphs are used in many applications to indicate prece-
dences among events. Figure 23.7 gives an example that arises when Pro-
fessor Bumstead gets dressed in the morning. The professor must don
certain garments before others (e.g., socks before shoes). Other items may
be put on in any order (e.g., socks and pants). A directed edge (u, v) in the
dag of Figure 23.7(a) indicates that garment ¥ must be donned before gar-
ment v. A topological sort of this dag therefore gives an order for getting
dressed. Figure 23.7(b) shows the topologically sorted dag as an ordering

