19

B-Trees

B-trees are balanced search trees designed to work well on magnetic disks
or other direct-access secondary storage devices. B-trees are similar to
red-black trees (Chapter 14), but they are better at minimizing disk I/O
operations.

B-trees differ significantly from red-black trees in that B-tree nodes may
have many children, from a handful to thousands. That is, the “branching
factor” of a B-tree can be quite large, although it is usually determined
by characteristics of the disk unit used. B-trees are similar to red-black
trees in that every n-node B-tree has height O(lg n), although the height of
a B-tree can be considerably less than that of a red-black tree because its
branching factor can be much larger. Therefore, B-trees can also be used
to implement many dynamic-set operations in time O(lgn).

B-trees generalize binary search trees in a natural manner. Figure 19.1
shows a simple B-tree. If a B-tree node x contains n[x] keys, then x
has n[x] + 1 children. The keys in node x are used as dividing points
separating the range of keys handled by x into n[x] + | subranges, each
handled by one child of x. When searching for a key in a B-tree, we make
an (n[x]+ 1)-way decision based on comparisons with the n[x] keys stored
at node x.

root|T)

Figure 19.1 A B-tree whose keys are the consonants of English. An internal node x
containing n[x] keys has n[x]+ 1 children. All leaves are at the same depth in the
tree. The lightly shaded nodes are examined in a search for the letter R.

382

Chapter 19 B-Trees

magnetic surface
disk of disk

read/write arm

read/write head

disk track

Figure 19.2 A typical disk drive.

Section 19.1 gives a precise definition of B-trees and proves that the
height of a B-tree grows only logarithmically with the number of nodes
it contains. Section 19.2 describes how to search for a key and insert a
key into a B-tree, and Section 19.3 discusses deletion. Before proceeding,
however, we need to ask why data structures designed to work on a mag-
netic disk are evaluated differently than data structures designed to work
in main random-access memory.

Data structures on secondary storage

There are many different technologies available for providing memory ca-
pacity in a computer system. The primary memory (or main memory) of a
computer system typically consists of silicon memory chips, each of which
can hold 1 million bits of data. This technology is more expensive per bit
stored than magnetic storage technology, such as tapes or disks. A typi-
cal computer system has secondary storage based on magnetic disks; the
amount of such secondary storage often exceeds the amount of primary
memory by several orders of magnitude.

Figure 19.2 shows a typical disk drive. The disk surface is covered
with a magnetizable material. The read/write head can read or write data
magnetically on the rotating disk surface. The read/write arm can position
the head at different distances from the center of the disk. When the head
is stationary, the surface that passes underneath it is called a track. The
information stored on each track is often divided into a fixed number of
equal-sized pages; for a typical disk, a page might be 2048 bytes in length.
The basic unit of information storage and retrieval is usually a page of
information—that is, disk reads and writes are typically of entire pages.
The access time—the time required to position the read/write head and to
wait for a given page of information to pass underneath the head—may be
large (e.g., 20 milliseconds), while the time to read or write a page, once
accessed, is small. The price paid for the low cost of magnetic storage

Chapter 19 B-Trees 383

techniques is thus the relatively long time it takes to access the data. Since
moving electrons is much easier than moving large (or even small) objects,
storage devices that are entirely electronic, such as silicon memory chips,
have a much smaller access time than storage devices that have moving
parts, such as magnetic disk drives. However, once everything is positioned
correctly, reading or writing a magnetic disk is entirely electronic (aside
from the rotation of the disk), and large amounts of data can be read or
written quickly.

Often, it takes more time to access a page of information and read it
from a disk than it takes for the computer to examine all the information
read. For this reason, in this chapter we shall look separately at the two
principal components of the running time:

* the number of disk accesses, and
* the CPU (computing) time.

The number of disk accesses is measured in terms of the number of pages
of information that need to be read from or written to the disk. We note
that disk access time is not constant—it depends on the distance between
the current track and the desired track and also on the initial rotational
state of the disk. We shall nonetheless use the number of pages read
or written as a crude first-order approximation of the total time spent
accessing the disk.

In a typical B-tree application, the amount of data handled is so large
that all the data do not fit into main memory at once. The B-tree algorithms
copy selected pages from disk into main memory as needed and write back
onto disk pages that have changed. Since the B-tree algorithms only need
a constant number of pages in main memory at any time, the size of main
memory does not limit the size of B-trees that can be handled.

We model disk operations in our pseudocode as follows. Let x be a
pointer to an object. If the object is currently in the computer’s main
memory, then we can refer to the fields of the object as usual: key[x],
for example. If the object referred to by x resides on disk, however, then
we must perform the operation Disk-READ(x) to read object x into main
memory before its fields can be referred to. (We assume that if x is already
in main memory, then DIsk-READ(x) requires no disk accesses; it is a “no-
op.”) Similarly, the operation Disk-WRITE(x) is used to save any changes
that have been made to the fields of object x. That is, the typical pattern
for working with an object is as follows.

X + a pointer to some object

Disk-READ(x)

operations that access and/or modify the fields of x
Disk-WRITE(x) > Omitted if no fields of x were changed.
other operations that access but do not modify fields of x

~N N R W N -

384

Chapter 19 B-Trees

root[T)

I node,
1000 keys

1001 nodes,
1,001,000 keys

1,002,001 nodes,
1,002,001,000 keys

Figure 19.3 A B-tree of height 2 containing over one billion keys. Each internal
node and leaf contains 1000 keys. There are 1001 nodes at depth 1 and over one
million leaves at depth 2. Shown inside each node x is n[x], the number of keys
in x.

The system can only keep a limited number of pages in main memory at
any one time. We shall assume that pages no longer in use are flushed
from main memory by the system; our B-tree algorithms will ignore this
issue.

Since in most systems the running time of a B-tree algorithm is deter-
mined mainly by the number of Disk-READ and Disk-WRITE operations
it performs, it is sensible to use these operations intensively by having
them read or write as much information as possible. Thus, a B-tree node
is usually as large as a whole disk page. The number of children a B-tree
node can have is therefore limited by the size of a disk page.

For a large B-tree stored on a disk, branching factors between 50 and
2000 are often used, depending on the size of a key relative to the size of a
page. A large branching factor dramatically reduces both the height of the
tree and the number of disk accesses required to find any key. Figure 19.3
shows a B-tree with a branching factor of 1001 and height 2 that can
store over one billion keys; nevertheless, since the root node can be kept
permanently in main memory, only two disk accesses at most are required
to find any key in this tree!

19.1 Definition of B-trees

To keep things simple, we assume, as we have for binary search trees and
red-black trees, that any “satellite information” associated with a key is
stored in the same node as the key. In practice, one might actually store
with each key just a pointer to another disk page containing the satellite in-
formation for that key. The pseudocode in this chapter implicitly assumes
that the satellite information associated with a key, or the pointer to such
satellite information, travels with the key whenever the key is moved from
node to node. Another commonly used B-tree organization stores all the
satellite information in the leaves and only stores keys and child pointers

19.1 Definition of B-trees 385

in the internal nodes, thus maximizing the branching factor of the internal
nodes.

A B-tree T is a rooted tree (with root root[T]) having the following
properties.

I. Every node x has the following fields:

a. n|x], the number of keys currently stored in node x,

b. the n[x] keys themselves, stored in nondecreasing order: key,[x] <
key,[x] < -+ < key,[x], and

c. leaf]x], a boolean value that is TRUE if x is a leaf and FALSE if x is
an internal node.

2. If x is an internal node, it also contains n[x] + 1 pointers ¢;[x], c2[x],
.. Caix)+1[x] to its children. Leaf nodes have no children, so their ¢;
fields are undefined.

3. The keys key,[x] separate the ranges of keys stored in each subtree: if k;
is any key stored in the subtree with root ¢;[x], then

ki < keyi[x] < ky < key,[x] < -+ < key,q[x] < knpxper -

4. Every leaf has the same depth, which is the tree’s height 4.

5. There are lower and upper bounds on the number of keys a node can
contain. These bounds can be expressed in terms of a fixed integer t > 2
called the minimum degree of the B-tree:

a. Every node other than the root must have at least 7 — 1 keys. Every
internal node other than the root thus has at least ¢ children. If the
tree is nonempty, the root must have at least one key.

b. Every node can contain at most 2t — 1 keys. Therefore, an internal
node can have at most 2¢ children. We say that a node is full if it
contains exactly 2¢ — 1 keys.

The simplest B-tree occurs when ¢ = 2. Every internal node then has
either 2, 3, or 4 children, and we have a 2-3-4 tree. In practice, however,
much larger values of ¢ are typically used.

The height of a B-tree

The number of disk accesses required for most operations on a B-tree is
proportional to the height of the B-tree. We now analyze the worst-case
height of a B-tree.

Theorem 19.1
If n > 1, then for any n-key B-tree 7 of height # and minimum degree
t>2,

hglog,n+1

386

Chapter 19 B-Trees

number
depth of nodes

0 1
1 2
2 2t
3 2?

Figure 19.4 A B-tree of height 3 containing a minimum possible number of keys.
Shown inside each node x is n[x].

Proof 1f a B-tree has height #, the number of its nodes is minimized
when the root contains one key and all other nodes contain ¢t — | keys. In
this case, there are 2 nodes at depth 1, 2¢ nodes at depth 2, 2% nodes at
depth 3, and so on, until at depth 4 there are 2t*~! nodes. Figure 19.4
illustrates such a tree for # = 3. Thus, the number n of keys satisfies the
inequality

h
no> l+@-1)) 207!
i=1

th—1
= 1+4+2(t-1) (ﬁ)
= 2"—1,
which implies the theorem.]

Here we see the power of B-trees, as compared to red-black trees. Al-
though the height of the tree grows as O(lg n) in both cases (recall that ¢ is
a constant), for B-trees the base of the logarithm can be many times larger.
Thus, B-trees save a factor of about Ig ¢ over red-black trees in the number
of nodes examined for most tree operations. Since examining an arbitrary
node in a tree usually requires a disk access, the number of disk accesses
is substantially reduced.

Exercises

19.1-1
Why don’t we allow a minimum degree of f = 1?

19.1-2
For what values of ¢ is the tree of Figure 19.1 a legal B-tree?

19.2 Basic operations on B-trees 387

19.1-3
Show all legal B-trees of minimum degree 2 that represent {1,2,3,4,5}.

19.1-4
Derive a tight upper bound on the number of keys that can be stored in a
B-tree of height / as a function of the minimum degree 7.

19.1-5

Describe the data structure that would result if each black node in a red-
black tree were to absorb its red children, incorporating their children with
its own.

19.2 Basic operations on B-trees

In this section, we present the details of the operations B-TREE-SEARCH,
B-TREE-CREATE, and B-TREE-INSERT. In these procedures, we adopt two
conventions:

* The root of the B-tree is always in main memory, so that a Disk-READ
on the root is never required; a Disk-WRITE of the root is required,
however, whenever the root node is changed.

* Any nodes that are passed as parameters must already have had a Disk-
READ operation performed on them.

The procedures we present are all “one-pass” algorithms that proceed
downward from the root of the tree, without having to back up.

Searching a B-tree

Searching a B-tree is much like searching a binary search tree, except that
instead of making a binary, or “two-way,” branching decision at each node,
we make a multiway branching decision according to the number of the
node’s children. More precisely, at each internal node x, we make an
(n[x] + 1)-way branching decision.

B-TREE-SEARCH is a straightforward generalization of the TREE-SEARCH
procedure defined for binary search trees. B-TREE-SEARCH takes as input a
pointer to the root node x of a subtree and a key k to be searched for in that
subtree. The top-level call is thus of the form B-TREE-SEARCH(root[T], k).
If k is in the B-tree, B-TREE-SEARCH returns the ordered pair (y, i) con-
sisting of a node y and an index i such that key,[y] = k. Otherwise, the
value NIL is returned.

388

Chapter 19 B-Trees

B-TREE-SEARCH(x, k)
1 i1
2 while i < n[x] and k > key;[x]
3 do i —i+1
if i < n{x] and k = key,[x]

then return (x, i)
if leaf|x]

then return NIL

else Disk-READ(c;[x])

return B-TREE-SEARCH(c;[x], k)

O 00~ N B

Using a linear-search procedure, lines 1-3 find the smallest j such that
k < key,[x], or else they set i to n[x]+ 1. Lines 4-5 check to see if we have
now discovered the key, returning if we have. Lines 6-9 either terminate
the search unsuccessfully (if x is a leaf) or recurse to search the appropriate
subtree of x, after performing the necessary Disk-READ on that child.

Figure 19.1 illustrates the operation of B-TREE-SEARCH; the lightly shad-
ed nodes are examined during a search for the key R.

As in the TREE-SEARCH procedure for binary search trees, the nodes
encountered during the recursion form a path downward from the root
of the tree. The number of disk pages accessed by B-TREE-SEARCH is
therefore ©(h) = O(log, n), where £ is the height of the B-tree and # is
the number of keys in the B-tree. Since n[x] < 2¢, the time taken by the
while loop of lines 2-3 within each node is O(¢), and the total CPU time
is O(th) = O(tlog, n).

Creating an empty B-tree

To build a B-tree 7, we first use B-TREE-CREATE to create an empty root
node and then call B-TREE-INSERT to add new keys. Both of these pro-
cedures use an auxiliary procedure ALLOCATE-NODE, which allocates one
disk page to be used as a new node in O(1) time. We can assume that a
node created by ALLOCATE-NODE requires no DIsk-READ, since there is
as yet no useful information stored on the disk for that node.

B-TREE-CREATE(T)

1 x — ALLOCATE-NODE()
2 leaf[x) — TRUE

3 n[x]<0

4 Disk-WRITE(x)

5 root[T] — x

B-

TREE-CREATE requires O(1) disk operations and O(1) CPU time.

19.2 Basic operations on B-trees 389

4/

$

v

%

X\@

y=c,kl
IIPIQIR S|T UIVI}

i

L
Tl T2 T3 T4 T5 T6
Figure 19.5 Splitting a node with 1 = 4. Node y is split into two nodes, y and z,
and the median key S of y is moved up into y’s parent.

nrrTnrI, Iy T, T, Ty

Splitting a node in a B-tree

Inserting a key into a B-tree is significantly more complicated than inserting
a key into a binary search tree. A fundamental operation used during
insertion is the splitting of a full node y (having 2¢ — 1 keys) around its
median key key,[y] into two nodes having ¢ — 1 keys each. The median key
moves up into y’s parent—which must be nonfull prior to the splitting
of y—to identify the dividing point between the two new trees; if y has no
parent, then the tree grows in height by one. Splitting, then, is the means
by which the tree grows.

The procedure B-TREE-SPLIT-CHILD takes as input a nonfull internal
node x (assumed to be in main memory), an index i, and a node y such
that y = ¢;[x] is a full child of x. The procedure then splits this child in
two and adjusts x so that it now has an additional child.

Figure 19.5 illustrates this process. The full node y is split about its
median key .S, which is moved up into y’s parent node x. Those keys in y
that are greater than the median key are placed in a new node z, which is
made a new child of x.

390 Chapter 19 B-Trees

B-TREE-SPLIT-CHILD(x, i, y)

Z — ALLOCATE-NODE()
leaf[z] — leafTy]
n[z] —t—-1
for j—1tot—1
do key;[z] « key;, V]
if not leafly]
then for j — 1 to ¢
do ¢;[z] « ¢;[y]
nlyl] —t-1
10 for j «— n[x]+ 1 downto / + 1
11 do Cj+1[X]*—Cj[X]
12 ¢iyi[x] « z
13 for j — nix] downto i
14 do key;, [x] — key;[x]
15 key[x] — key,[y]
16 nl[x] — n[x]1+1
17 Disk-WRITE(y)
18 Disk-WRITE(z)
19 Disk-WRITE(x)

R NNV HAE W -

O

B-TREE-SpLIT-CHILD works by straightforward “cutting and pasting.”
Here, y is the ith child of x and is the node being split. Node y origi-
nally has 2¢ — 1 children but is reduced to ¢ — 1 children by this operation.
Node z “adopts” the #— 1 largest children of y, and z becomes a new child
of x, positioned just after y in x’s table of children. The median key of y
moves up to become the key in x that separates y and z.

Lines 1-8 create node z and give it the larger — | keys and corresponding
t children of y. Line 9 adjusts the key count for y. Finally, lines 10-16
insert z as a child of x, move the median key from y up to x in order
to separate y from z, and adjust x’s key count. Lines 17-19 write out all
modified disk pages. The CPU time used by B-TREE-SPLIT-CHILD is ©(¢),
due to the loops on lines 4-5 and 7-8. (The other loops run for at most ¢
iterations.)

Inserting a key into a B-tree

Inserting a key k into a B-tree 7 of height /4 is done in a single pass
down the tree, requiring O(h) disk accesses. The CPU time required is
O(th) = O(tlog,n). The B-TREE-INSERT procedure uses B-TREE-SPLIT-
CHILD to guarantee that the recursion never descends to a full node.

19.2 Basic operations on B-trees 391

root{T]

r

[A,D F H L NP | il

LLLLLL]

Figure 19.6 Splitting the root with ¢ = 4. Root node r is split in two, and a new
root node s is created. The new root contains the median key of r and has the two
halves of r as children. The B-tree grows in height by one when the root is split.

T, T, T, T, T, T, T, T,

B-TREE-INSERT(T, k)

I r—roolT]

2 ifn[rj=2t-1

3 then s — ALLOCATE-NODE()
4 root[T] « s

5 leaf[s] «— FALSE

6 nis]—0

7 cfs]—r

8 B-TREE-SPLIT-CHILD(S, 1, 1)

9 B-TREE-INSERT-NONFULL(S, k)
0

1 else B-TREE-INSERT-NONFULL(7, k)

Lines 3-9 handle the case in which the root node r is full: the root is
split and a new node s (having two children) becomes the root. Splitting
the root is the only way to increase the height of a B-tree. Figure 19.6
illustrates this case. Unlike a binary search tree, a B-tree increases in
height at the top instead of at the bottom. The procedure finishes by
calling B-TREE-INSERT-NONFULL to perform the insertion of key & in the
tree rooted at the nonfull root node. B-TREE-INSERT-NONFULL recurses as
necessary down the tree, at all times guaranteeing that the node to which
it recurses is not full by calling B-TREE-SPLIT-CHILD as necessary.

The auxiliary recursive procedure B-TREE-INSERT-NONFULL inserts key
k into node x, which is assumed to be nonfull when the procedure is
called. The operation of B-TREE-INSERT and the recursive operation of
B-TREE-INSERT-NONFULL guarantee that this assumption is true.

392 Chapter 19 B-Trees

B-TREE-INSERT-NONFULL(X, k)
1 i« n[x]
2 if leaf]x]
3 then while i > 1 and & < key,[x]

4 do key;,[x] — key;[x]
5 l—i—-1
6 key, . [x] — k
7 n[x] — n[x]+1
8 Disk-WRITE(X)
9 else while i > 1 and & < key,;[x]
10 do i —i—1
11 i—i+1
12 Disk-READ(¢;[x])
13 if n[ci[x]] =2t -1
14 then B-TREE-SPLIT-CHILD(x, /, ¢;/[x])
15 if k > key,[x]
16 then / — i+ 1
17 B-TREE-INSERT-NONFULL(¢;[x], k)

The B-TREE-INSERT-NONFULL procedure works as follows. Lines 3-
8 handle the case in which x is a leaf node by inserting key k into x.
If x is not a leaf node, then we must insert k£ into the appropriate leaf
node in the subtree rooted at internal node x. In this case, lines 9-11
determine the child of x to which the recursion descends. Line 13 detects
whether the recursion would descend to a full child, in which case line 14
uses B-TREE-SPLIT-CHILD to split that child into two nonfull children, and
lines 15-16 determine which of the two children is now the correct one
to descend to. (Note that there is no need for a Disk-READ(c;[x]) after
line 16 increments #, since the recursion will descend in this case to a child
that was just created by B-TREE-SPLIT-CHILD.) The net effect of lines 13-
16 is thus to guarantee that the procedure never recurses to a full node.
Line 17 then recurses to insert k into the appropriate subtree. Figure 19.7
illustrates the various cases of inserting into a B-tree.

The number of disk accesses performed by B-TREE-INSERT is O(4) for
a B-tree of height 4, since only O(1) Disk-READ and Disk-WRITE opera-
tions are performed between calls to B-TREE-INSERT-NONFULL. The total
CPU time used is O(th) = O(tlog, n). Since B-TREE-INSERT-NONFULL is
tail-recursive, it can be alternatively implemented as a while loop, demon-
strating that the number of pages that need to be in main memory at any
time is O(1).

19.2 Basic operations on B-trees 393

(a) initial tree

(b) B inserted

[ABCcDE

(c) Q inserted

(d) L inserted

(e) Finserted

Figure 19.7 Inserting keys into a B-tree. The minimum degree ¢ for this B-tree
is 3, so a node can hold at most 5 keys. Nodes that are modified by the insertion
process are lightly shaded. (a) The initial tree for this example. (b) The result of
inserting B into the initial tree; this is a simple insertion into a leaf node. (¢) The
result of inserting Q into the previous tree. The node RST UV is split into two
nodes containing RS and UV, the key T is moved up to the root, and Q is inserted
in the leftmost of the two halves (the RS node). (d) The result of inserting L into
the previous tree. The root is split right away, since it is full, and the B-tree grows
in height by one. Then L is inserted into the leaf containing J K. (e) The result of
inserting F into the previous tree. The node ABCDE is split before F is inserted
into the rightmost of the two halves (the DE node).

394

Chapter 19 B-Trees

Exercises

19.2-1
Show the results of inserting the keys

F,S,Q,K,C,L,H, T,V,W,M,R,N,P,A,B,X,Y,D,Z,E

in order into an empty B-tree. Only draw the configurations of the tree
just before some node must split, and also draw the final configuration.

19.2-2

Explain under what circumstances, if any, redundant Disk-READ or Disk-
WRITE operations are performed during the course of executing a call to
B-TREE-INSERT. (A redundant Disk-READ is a Disk-READ for a page that
is already in memory. A redundant Disk-WRITE writes to disk a page of
information that is identical to what is already stored there.)

19.2-3
Explain how to find the minimum key stored in a B-tree and how to find
the predecessor of a given key stored in a B-tree.

19.2-4
Suppose that the keys {1,2,...,n} are inserted into an empty B-tree with
minimum degree 2. How many nodes does the final B-tree have?

19.2-5

Since leaf nodes require no pointers to children, they could conceivably
use a different (larger) ¢ value than internal nodes for the same disk page
size. Show how to modify the procedures for creating and inserting into a
B-tree to handle this variation.

19.2-6

Suppose that B-TREE-SEARCH is implemented to use binary search rather
than linear search within each node. Show that this makes the CPU time
required O(lgn), independently of how ¢ might be chosen as a function
of n.

19.2-7

Suppose that disk hardware allows us to choose the size of a disk page
arbitrarily, but that the time it takes to read the disk page is a + bt, where
a and b are specified constants and ¢ is the minimum degree for a B-tree
using pages of the selected size. Describe how to choose ¢ so as to minimize
(approximately) the B-tree search time. Suggest an optimal value of ¢ for
the case in which a = 30 milliseconds and b = 40 microseconds.

19.3 Deleting a key from a B-tree 395

19.3 Deleting a key from a B-tree

Deletion from a B-tree is analogous to insertion but a little more compli-
cated. We sketch how it works instead of presenting the complete pseu-
docode.

Assume that procedure B-TREE-DELETE is asked to delete the key k&
from the subtree rooted at x. This procedure is structured to guarantee
that whenever B-TREE-DELETE is called recursively on a node x, the num-
ber of keys in x is at least the minimum degree ¢. Note that this condition
requires one more key than the minimum required by the usual B-tree
conditions, so that sometimes a key may have to be moved into a child
node before recursion descends to that child. This strengthened condi-
tion allows us to delete a key from the tree in one downward pass without
having to “back up” (with one exception, which we’ll explain). The fol-
lowing specification for deletion from a B-tree should be interpreted with
the understanding that if it ever happens that the root node x becomes an
internal node having no keys, then x is deleted and x’s only child ¢[x]
becomes the new root of the tree, decreasing the height of the tree by one
and preserving the property that the root of the tree contains at least one
key (unless the tree is empty).

Figure 19.8 illustrates the various cases of deleting keys from a B-tree.

1. If the key k is in node x and x is a leaf, delete the key & from x.
2. If the key k is in node x and x is an internal node, do the following.

a. If the child y that precedes k in node x has at least ¢ keys, then
find the predecessor k' of k in the subtree rooted at y. Recursively
delete k', and replace k by k’ in x. (Finding k' and deleting it can
be performed in a single downward pass.)

b. Symmetrically, if the child z that follows & in node x has at least
t keys, then find the successor k' of k in the subtree rooted at :z.
Recursively delete k’, and replace k¥ by k' in x. (Finding k' and
deleting it can be performed in a single downward pass.)

c. Otherwise, if both y and z have only ¢ — 1 keys, merge k£ and all
of z into y, so that x loses both k and the pointer to z, and y now
contains 2¢ — 1 keys. Then, free z and recursively delete k from y.

3. If the key k is not present in internal node x, determine the root ¢;[x]
of the appropriate subtree that must contain k, if k is in the tree at
all. If ¢;[x] has only ¢ — 1 keys, execute step 3a or 3b as necessary to
guarantee that we descend to a node containing at least ¢ keys. Then,
finish by recursing on the appropriate child of x.

a. If ¢;[x] has only t — 1 keys but has a sibling with ¢ keys, give ¢;[x]
an extra key by moving a key from x down into ¢;[x], moving a key
from ¢;[x]’s immediate left or right sibling up into x, and moving
the appropriate child from the sibling into ¢;[x].

396

Chapter 19 B-Trees

(a) initial tree

(b) F deleted: case 1

(c) M deleted: case 2a

Figure 19.8 Deleting keys from a B-tree. The minimum degree for this B-tree is
t = 3, so a node (other than the root) cannot have less than 2 keys. Nodes that are
modified are lightly shaded. (a) The B-tree of Figure 19.7(e). (b) Deletion of F.
This is case 1: simple deletion from a leaf. (c¢) Deletion of M. This is case 2a: the
predecessor L of M is moved up to take M’s position. (d) Deletion of G. This
is case 2¢: G is pushed down to make node DEGJK, and then G is deleted from
this leaf (case 1). (e) Deletion of D. This is case 3b: the recursion can’t descend
to node CL because it has only 2 keys, so P is pushed down and merged with CL
and TX to form CLPTX; then, D is deleted from a leaf (case 1). (e') After (d),
the root is deleted and the tree shrinks in height by one. (f) Deletion of B. This is
case 3a: C is moved to fill B’s position and E is moved to fill C’s position.

19.3 Deleting a key from a B-tree 397

(e) D deleted: case 3b

LPT,K

e

(e tree shrinks

b. If ¢;[x] and all of ¢;[x]’s siblings have t— 1 keys, merge ¢; with one sib-
ling, which involves moving a key from x down into the new merged
node to become the median key for that node.

Since most of the keys in a B-tree are in the leaves, we may expect that
in practice, deletion operations are most often used to delete keys from
leaves. The B-TREE-DELETE procedure then acts in one downward pass
through the tree, without having to back up. When deleting a key in an
internal node, however, the procedure makes a downward pass through the
tree but may have to return to the node from which the key was deleted
to replace the key with its predecessor or successor (cases 2a and 2b).

Although this procedure seems complicated, it involves only O(h) disk
operations for a B-tree of height A, since only O(1) calls to Disk-READ and
Disk-WRITE are made between recursive invocations of the procedure. The
CPU time required is O(th) = O(tlog, n).

Exercises

19.3-1
Show the results of deleting C, P, and ¥V, in order, from the tree of Fig-
ure 19.8(f).

19.3-2
Write pseudocode for B-TREE-DELETE.

398

Chapter 19 B-Trees

Problems

19-1 Stacks on secondary storage

Consider implementing a stack in a computer that has a relatively small
amount of fast primary memory and a relatively large amount of slower
disk storage. The operations PusH and Pop are supported on single-word
values. The stack we wish to support can grow to be much larger than can
fit in memory, and thus most of it must be stored on disk.

A simple, but inefficient, stack implementation keeps the entire stack on
disk. We maintain in memory a stack pointer, which is the disk address of
the top element on the stack. If the pointer has value p, the top element is
the (p mod m)th word on page |p/m| of the disk, where m is the number
of words per page.

To implement the PUsH operation, we increment the stack pointer, read
the appropriate page into memory from disk, copy the element to be
pushed to the appropriate word on the page, and write the page back to
disk. A Pop operation is similar. We decrement the stack pointer, read in
the appropriate page from disk, and return the top of the stack. We need
not write back the page, since it was not modified.

Because disk operations are relatively expensive, we use the total number
of disk accesses as a figure of merit for any implementation. We also count
CPU time, but we charge ©(m) for any disk access to a page of m words.

a. Asymptotically, what is the worst-case number of disk accesses for n
stack operations using this simple implementation? What is the CPU
time for n stack operations? (Express your answer in terms of m and n
for this and subsequent parts.)

Now, consider a stack implementation in which we keep one page of the
stack in memory. (We also maintain a small amount of memory to keep
track of which page is currently in memory.) We can perform a stack
operation only if the relevant disk page resides in memory. If necessary,
the page currently in memory can be written to the disk and the new page
read in from the disk to memory. If the relevant disk page is already in
memory, then no disk accesses are required.

b. What is the worst-case number of disk accesses required for » PusH
operations? What is the CPU time?

¢. What is the worst-case number of disk accesses required for n stack
operations? What is the CPU time?

Suppose that we now implement the stack by keeping two pages in memory
(in addition to a small number of words for bookkeeping).

d. Describe how to manage the stack pages so that the amortized number
of disk accesses for any stack operation is O(1/m) and the amortized
CPU time for any stack operation is O(1).

Notes for Chapter 19 399

19-2 Joining and splitting 2-3-4 trees

The join operation takes two dynamic sets S’ and S” and an element x
such that for any x’ € S’ and x" € §”, we have key[x'] < key[x] < key[x"].
It returns a set S = .8’ U {x} US". The split operation is like an “inverse”
join: given a dynamic set .S and an element x € S, it creates a set .S’
consisting of all elements in .S — {x} whose keys are less than key[x] and
a set S” consisting of all elements in S — {x} whose keys are greater than
key[x]. In this problem, we investigate how to implement these operations
on 2-3-4 trees. We assume for convenience that elements consist only of
keys and that all key values are distinct.

a. Show how to maintain, for every node x of a 2-3-4 tree, the height of
the subtree rooted at x as a field height[x]. Make sure that your im-
plementation does not affect the asymptotic running times of searching,
insertion, and deletion.

b. Show how to implement the join operation. Given two 2-3-4 trees 7’
and 7" and a key k, the join should run in O(|4’ — h"|) time, where A’
and A" are the heights of 7’ and 7", respectively.

¢. Consider the path p from the root of a 2-3-4 tree T to a given key &, the
set S’ of keys in T that are less than k, and the set S” of keys in T that are
greater than k. Show that p breaks S’ into a set of trees {73, T, ..., T,,}
and a set of keys {k{,k;,...,k;,}, where, for i = 1,2,...,m, we have
y < k] < z for any keys y € T/_, and z € T;. What is the relationship
between the heights of 7/_, and 77? Describe how p breaks S” into sets
of trees and keys.

d. Show how to implement the split operation on 7". Use the join operation
to assemble the keys in §’ into a single 2-3-4 tree T’ and the keys in S
into a single 2-3-4 tree T”. The running time of the split operation
should be O(lgn), where n is the number of keys in T. (Hint: The costs
for joining should telescope.)

Chapter notes

Knuth [123], Aho, Hopcroft, and Ullman {4], and Sedgewick [175] give
further discussions of balanced-tree schemes and B-trees. Comer [48] pro-
vides a comprehensive survey of B-trees. Guibas and Sedgewick [93] dis-
cuss the relationships among various kinds of balanced-tree schemes, in-
cluding red-black trees and 2-3-4 trees.

In 1970, J. E. Hopcroft invented 2-3 trees, a precursor to B-trees and
2-3-4 trees, in which every internal node has either two or three children.
B-trees were introduced by Bayer and McCreight in 1972 [18]; they did
not explain their choice of name.

